

TEST REPORT

Send To: 13790

Ms. Tracy Bloor Fairey Industrial Ceramics Ltd. Unit 4 Lymedale Cross Industrial Estate Newcastle-Under-Lyme, Staffordshire ST5 9BT, United Kingdom

Facility: 13792

Fairey Industrial Ceramics Ltd. Unit 4 Lymedale Cross Industrial Estate Newcastle-Under-Lyme Staffordshire ST5 9BT United Kingdom

Result	PASS	Rep <mark>ort Date</mark> 16-	SEP-2015
Customer Name	Doulton Water Filters		
Tested To	Standard 53 Cyst Live Cryptosporidium	POU/POE	
Description	HIP/Sterasyl Inline		
Test Type	5 Year Testing		
Job Number	J-00170136		
Project Number	W0141475		
Project Manager	Demarrio Boles		

Thank you for having your product tested by NSF International.

Please contact your Project Manager if you have any questions or concerns pertaining to this report.

Report Authorization <u>percent de Vanselles</u>

Date 16-SEP-2015

Kerri Levanseler - Director, Chemistry Laboratory

J-00170136

This report shall not be reproduced, except in its entirety, without the written approval of NSF. This report does not represent NSF Certification or authorization to use the NSF Mark. Authorization to use the NSF Mark is limited to products appearing in the Company's Official NSF Listing (www.nsf.org). The results relate only to those items tested, in the condition received at the laboratory.

Standard 53 Cyst Live Cryptosporidium POU/POE: PASS

Manufacturer's Name: Fairey Industrial Ceramics Ltd. Job ID: J-00170136 12-AUG-2015 Date of Job Creation: Date Sample Received: 12-AUG-2015 **Date Test Completed:** 11-SEP-2015 Sample Type: 5 Year Testing **HIP/Sterasyl Inline** Product: DCC Number: HIP/Sterasyl Inline Flushing Time: 10 minutes, let stand 24 hours, then flush 10 minutes Maximum Rated Op. Pressure: 100 psi **On Cycle:** 50/50 Percent Capacity: 200% Physical Description of Sample: Plumbed in to Separate Tap without Reservoir Rated Service Flow: 1.05 GPM Test Description: STD 53 - Live Cyst Reduction - HIP/Sterasyl Inline - 5Y Trade Designation/Model Number: HIP/Sterasyl Inline Performance Standard: 53 - 2014 ES Cryptosporidium P/F: PASS Pass/Fail Criteria (Cryptosporidium %R): 99.95 % **Overall Percent Reduction:** >99.99 % All of the effluent percent reduction sample points are greater than or equal to the pass/fail criteria.: YES

EC

This report shall not be reproduced, except in its entirety, without the written approval of NSF. This report does not represent NSF Certification or authorization to use the NSF Mark. Authorization to use the NSF Mark is limited to products appearing in the Company's Official NSF Listing (www.nsf.org). The results relate only to those items tested, in the condition received at the laboratory.

Data Summary Table

Accumulated Volume (gal)		Dynamic Pressure (psi)	
Effluent 1	Effluent 2	Influent 1	Influent 2
18	15		
144	133	60	60
218	202	61	61
263	244	62	62
299	283	62	62
	(g Effluent 1 18 144 218 263	(gal) Effluent 1 Effluent 2 18 15 144 133 218 202 263 244	(gal) (p Effluent 1 Effluent 2 Influent 1 18 15 144 144 133 60 218 202 61 263 244 62

fluent 1	Influent 2 100000 100000 100000 100000 100000	Effluent 1 ND(1) ND(1) ND(1) ND(1) ND(1)	Effluent 2 ND(1) 9 2 ND(1) ND(1)	Effluent 1 1.5 1.5 0.95 0.61 0.32	Effluent 2 1.4 1.4 1.1 0.57 0.31
00000	100000 100000 100000	ND(1) ND(1) ND(1)	9 2 ND(1)	1.5 0.95 0.61	1.4 1.1 0.57
00000	100000 100000 100000	ND(1) ND(1)	2 ND(1)	0.95 0.61	1.1 0.57
00000	100000 100000	ND(1)	ND(1)	0.61	0.57
00000	100000				
		ND(1)	ND(1)	0.32	0.31
ection Limit:	1 Oocysts/L		BC		
			Q		
				Q E C H N I Q	QUE GECHNIQUE TECHNIQ

This report shall not be reproduced, except in its entirety, without the written approval of NSF. This report does not represent NSF Certification or authorization to use the NSF Mark. Authorization to use the NSF Mark is limited to products appearing in the Company's Official NSF Listing (www.nsf.org). The results relate only to those items tested, in the condition received at the laboratory.

Data Analysis Table

Sample Point	Inf. Average (oocysts/L)		Average (oocysts/L)		Eff. % Reduction (%)	
	Influent 1	Influent 2	Effluent 1	Effluent 2	Effluent 1	Effluent 2
8th Cycle	100000	100000	ND(1)	9	99.99	99.99
25%	100000	100000	ND(1)	6	99.99	99.99
50%	100000	100000	ND(1)	4	99.99	99.99
75%	100000	100000	ND(1)	3	99.99	99.99

Sample Point		Reduction %)	Maximum (oocysts/L)		
	Influent 1	Influent 2	Effluent 1	Effluent 2	
8th Cycle	99.99	99.99	ND(1)	9	
25%	99.99	99.99	ND(1)	9	
50%	99.99	99.99	ND(1)	9	
75%	99.99	99.99	ND(1)	9	

Inf. Average: Influent Average

Average: All Effluent Average

Eff. % Reduction: Effluent percent reduction at this sample point.

ECHNIQUES Ave. % Reduction: Percent reduction calculated from all prior influents and effluents.

Maximum: Maximum Effluent

Page 4 of 6

This report shall not be reproduced, except in its entirety, without the written approval of NSF. This report does not represent NSF Certification or authorization to use the NSF Mark. Authorization to use the NSF Mark is limited to products appearing in the Company's Official NSF Listing (www.nsf.org). The results relate only to those items tested, in the condition received at the laboratory.

Water Characteristics

		Range		
Characteristic	Units	Minimum	Average	Maximum
Hardness, Total	mg/LCaCO3	75	75	75
Solids, Total Dissolved	mg/L	250	250	250
Temperature	degrees C	21	21	21
Turbidity	NTU	ND(0.1)	ND(0.1)	ND(0.1)
рН		7.72		7.72

All analyses performed at NSF International, 789 N. Dixboro Road, Ann Arbor MI 48105

Calculation Definitions

All calculations use values as presented in the Data Summary Table and rounding is performed only at the conclusion of the calculation.

UE

Percent Reduction Calculations

Overall Percent Reduction:

Influent Average includes all influents. Effluent Average includes all effluents.

% Reduction = <u>Influent Average - Effluent Average</u> * 100

Percent Reduction for Current Influent Point:

The influent value for the specific sample point. Effluent Average includes all effluents for the current sample point.

% Reduction = <u>Influent - Effluent Average</u> * 100

Percent Reduction for Current Effluent Point:

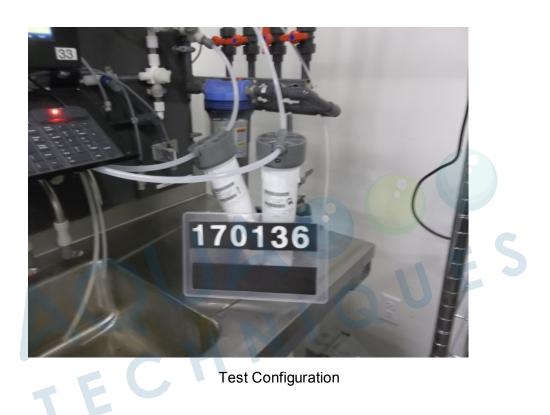
The influent value for the specific sample point. Effluent includes the effluent value for the specific sample point.

% Reduction = <u>Influent - Effluent</u> * 100

FI20150916182331

J-00170136

Page 5 of 6


This report shall not be reproduced, except in its entirety, without the written approval of NSF. This report does not represent NSF Certification or authorization to use the NSF Mark. Authorization to use the NSF Mark is limited to products appearing in the Company's Official NSF Listing (www.nsf.org). The results relate only to those items tested, in the condition received at the laboratory.

Average Percent Reduction Calculations

Average Percent Reduction:

Influent Average includes all influents up to and including the current sample point. Effluent Average includes all effluents up to and including the current sample point.

% Reduction = Influent Average - Effluent Average * 100

This report shall not be reproduced, except in its entirety, without the written approval of NSF. This report does not represent NSF Certification or authorization to use the NSF Mark. Authorization to use the NSF Mark is limited to products appearing in the Company's Official NSF Listing (www.nsf.org). The results relate only to those items tested, in the condition received at the laboratory.